An Open-Source Frequency-Domain Model for Floating Wind Turbine Design Optimization

نویسندگان

چکیده

Abstract A new frequency-domain dynamics model has been developed that uses open-source components to efficiently represent a complete floating wind turbine system. The model, called RAFT (Response Amplitudes of Floating Turbines), incorporates quasi-static mooring reactions, strip-theory and potential-flow hydrodynamics, blade-element-momentum aerodynamics, linear control. formulation is compatible with wide variety support structure configurations no manual or time-domain preprocessing steps are required, making very practical in design optimization workflows. applied three reference designs its predictions compared results from OpenFAST simulations. There good agreement mean offsets as well the statistics spectra dynamic response, verifying RAFT’s general suitability for analysis. Follow-on work will include verification turbine-control features application problems.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrated Optimization of Floating Wind Turbine Systems

The purpose of this paper is to show an exemplary methodology for the integrated conceptioning of a floating wind turbine system with focus on the spar-type hull and the wind turbine blade-pitch-to-feather controller. It is a special interest to use a standard controller, which is easily implementable, even at early design stages. The optimization of the system is done with adapted static and d...

متن کامل

DIPL - 187 Reduced Model Design of a Floating Wind Turbine

Floating platform concepts offer the prospect of harvesting offshore wind energy at deep water locations for countries with a limited number of suitable shallow water locations for bottom-mounted offshore wind turbines. The floating spar-buoy concept has shown promising experimental and theoretical results. Although various codes for a detailed simulation exist the purpose of this work is to el...

متن کامل

Reduced Nonlinear Model of a Spar-mounted Floating Wind Turbine

Floating offshore wind turbines (FOWTs) are complex dynamic systems requiring a thorough design for optimal operating performance and stability. Advanced control strategies, like model predictive control, are part of the integrated development of new concepts. This paper presents a simplified and computationally efficient model of the spar-mounted OC3-Hywind FOWT. Applications are, e.g., the re...

متن کامل

Blade Geometry Optimization for the Design of Wind Turbine Rotors

This paper describes a blade geometry optimization method for wind turbine rotors in which considerations are given to aerodynamics, structures, noise, and cost. An existing computer program named PROPGA, which is a genetic-algorithm based optimization method for wind turbines, provided part of the foundation for this work. The objective was to develop and implement structures and costs modelin...

متن کامل

Damping Wind and Wave Loads on a Floating Wind Turbine

Offshore wind energy capitalizes on the higher and less turbulent wind speeds at sea. To enable deployment of wind turbines in deep-water locations, structures are being explored, where wind turbines are placed on a floating platform. This combined structure presents a new control problem, due to the partly unconstrained movement of the platform and ocean wave excitation. If this additional com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2022

ISSN: ['1742-6588', '1742-6596']

DOI: https://doi.org/10.1088/1742-6596/2265/4/042020